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Abstract. Here we propose a global optimization method for general, i.e. indefinite quadratic 
problems, which consist of maximizing a non-concave quadratic function over a polyhedron in 
n-dimensional Euclidean space. This algorithm is shown to be finite and exact in non-degenerate 
situations. The key procedure uses copositivity arguments to ensure escaping from inefficient local 
solutions. A similar approach is used to generate an improving feasible point, if the starting point is 
not the global solution, irrespective of whether or not this is a local solution. Also, definiteness 
properties of the quadratic objective function are irrelevant for this procedure. To increase efficiency 
of these methods, we employ pseudoconvexity arguments. Pseudoconvexity is related to copositivity in 
a way which might be helpful to check this property efficiently even beyond the scope of the cases 
considered here. 
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1. Introduction 

Indefinite quadratic problems consist of maximizing a non-concave quadratic 
function over a polyhedron in n-dimensional Euclidean space ~n. They arise in 
different fields of applications from combinatorial optimization to database 
problems and VLSI design. The solution of problems of this type is, from the 
perspective of worst-case complexity, NP-hard [17]; even checking whether a 
given feasible point is a local solution is also NP-hard [13], [16]. Pardalos [14] 
pointed out that there is in general no local criterion for global optimality. As an 
example to illustrate this observation, he chose the convex maximization problem 

(�89 subjectto - l < - x i < ~ l  , l<~i<~n,  (1.1) 
j= l  

which has 3 n Karush-Kuhn-Tucker points and 2 n local maxima. 
A finite algorithm for finding the global maximum of a convex quadratic 

function over a polyhedron is specified in [3]. This procedure is based on an 
optimality criterion derived by means of e-subdifferential calculus (see [8], [9]). 
However, it has been shown recently [2] that there is a similar criterion also for 
indefinite quadratic problems. Based upon this result, we develop in this paper a 
procedure that essentially enables escaping inefficient local maxima. Furthermore, 
we propose an algorithm which delivers the exact global solution after a finite 
number of iterations. 
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The similarity between this algorithm and the algorithm given in [3] for the 
convex case consists primarily of using a procedure which checks copositivity of 
an n x n-matrix Q with respect to a polyhedral cone F C_ Nn. Recall that Q is said 
to be F-copositive if ( v r denoting transpose of v ) 

vrQv>~O forall  v E F .  (1.2) 

However, there is an essential difference between the convex and the indefinite 
cases. While in the former case the global maximum is attained at a vertex of the 
feasible set M, in the latter case the solution lies in the interior of a face of M. 
Hence, a global optimization procedure for indefinite problems cannot consist of 
an "efficient" search among vertices, e.g., by applying the simplex method to an 
approximate auxiliary linear program, as done in [3]. 

The paper is organized as follows: in Section 2, we start from an arbitrary 
feasible point and show how to obtain an improving feasible point from the 
criterion in [2], if the starting point is not the global solution, irrespective of 
whether or not it is a Karush-Kuhn-Tucker  point. Also, definiteness properties 
of the quadratic objective function are irrelevant for this procedure. In Section 3, 
we employ pseudoconvexity arguments to increase efficiency of the methods 
developed in Section 2. Pseudoconvexity is related to copositivity in a way which 
might be helpful to check this property efficiently even beyond the scope of the 
cases considered here. In Section 4, we present a global optimization procedure 
which is shown to be finite and exact in nondegenerate situations. Here the 
nondegeneracy assumption is only needed to ensure finiteness of Lemke's 
algorithm, which is used as a subroutine in the proposed procedure. The method 
resembles in some sense the branch-and-bound procedures for global optimization 
described, e.g. in [10], using the very specific properties of quadratic functions 
and polytopes in an extensive way. 

2. Escaping from Local Solutions 

Consider the general quadratic maximization problem 

1 T g(x)=~x Qx + crx-+max! subjectto x ~ M  , 

where 

M = { x E R n : A x ~ b } .  

(2.1) 

Here Q is a symmetric n x n-matrix; c ~ Rn; A is an m x n-matrix; and b ~ Nm. 
For the sake of completeness, we recapitulate the characterization of optimality 
from [2]. To this end, we need some notation: consider a feasible point 2@ M, 
denote by 

I()7) = {i E ( 1 , . . . ,  m) : (A2)i = bi) (2.3) 

(2.2) 
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the set of binding constraints at 2; and by 

F = {v U_ [R ~ : (Av) ,  <~ 0 for all i E 1(2)} (2.4) 

the tangent cone of M at 2. The idea in [2] now is to proceed as follows: 
(a) pick a feasible direction v at 2; 
(b) consider the increment 

v r Q v 1~ 2 
Ov(,~ ) = g ( 2 + h v ) - g ( 2 ) =  2 + v r ( Q x  + c ) 1 '  1 > i 0 ;  (2.5) 

(c) determine the extremal feasible point 2 + hvv on the ray given by v, i.e. the 
feasible point farthest away from 2 on that ray, and calculate the extremal 
increment 0v(ho). 

Due  to polyhedrality of the feasible set M, the set of feasible directions coincides 
with the cone F defined in (2.4). Observe that 2 is a Ka rush -Kuhn-Tucke r  point 
if and only if 2 satisfies 

0 '~(0) = v r ( Q 2  + c) < 0 for all v C F .  (2.6) 

It is a straightforward task to determine the extremal point on a ray given by a 
direction v E F. If we define 

f m a x [ { O } U { ( A v ) J u  i ' i ~ I ( 2 ) } ] ,  if v E t ,  
z(o) 

{ + ~ ,  otherwise,  
(2.7) 

where we denote by ui = b i - ( A 2 ) i  > 0 the slack variables at 2 for i J ~ I ( 2 ) ,  then 
for h >~ 0 we obtain in the case z ( v ) >  0 that 

2 + h v E M  if and only if h~<a v = l / z ( v ) .  (2.8) 

In this case ( z ( v ) >  0) the intersection of M with the ray given by v is bounded 
and the extremal feasible point on this ray is given by 2 + hvv E M. So it only 
remains to calculate the extremal increment via (2.5), (2.7), and (2.8): 

1 
Ov(hv) - 2zZ(v) [vrQv + 2 v r ( Q 2  + c)z(v)] . (2.9) 

Now z(v)  is a piecewise linear functional. To obtain linear expressions, we 
decompose F as follows: denote for i E { 1 , . . . ,  m } \ I ( 2 )  

F i = {v E F : (Av) i  >! 0 and u](Av)i  >i ui(Av)] for all j E { 1 , . . . ,  m} \ I (2 )}  , 

(2.10) 

then F i is a polyhedral cone satisfying F i = {v C F : z(v)  = (Av)Ju~} .  Similarly, 
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Fo={vEF:(Av) ,<~O forall  i E { 1 , . . . , m } \ I ( s  (2.11) 

is a polyhedral cone with F 0 = { v E ~ n : A v < < - o } = { v E F : z ( v ) = 0 } .  For a 
geometric interpretation of the cones F i see Section 4 in [2]. 

The optimality condition specified below now uses Fz-copositivity of Q~, where 
the symmetric n x n-matrices Q~ are defined by 

- Q ,  if i = 0 ,  
Q~= B i -  uiQ , otherwise, (2.12) 

and 

B i = -a i (Qs  + c) r - (Qs + c)(a/) r , (2.13) 

where (ai) r denotes the i-th row of A. The following result is taken from [2]. 

T H E O R E M  1. Let 2 be a feasible point of  the problem (2.1). Define I(2), Fi, and 
Qi as in (2.3), (2.10), (2.11), (2.12), and (2.13), respectively. Then the following 
assertions are equivalent: 

(a) s is a global solution to (2.1); 
(b) s is a Karush-Kuhn-Tucker point of  (2.1) and 

Q~ is Fi-copositive for all i E { 0 , . . . ,  m}\I (s  . (2.14) 

Proof. The preceding arguments prove that (a) implies (b), since if 2 is a global 
solution to (2.1), then the inequality 0v(Ao)~<0 results and hence (in the case 
z(v) > 0) the condition 

vrQv + 2vr(Q2 + c)z(v) <~ 0 for all v ~ F (2.15) 

holds. In the case of an unbounded ray of feasible points (where z(v)= 0), an 
improvement is impossible along this ray if and only if the leading coefficient 
vrQv <~0 (recall that in case of equality vrQv =0 ,  condition (2.6) ensures 
0v(A) = vr(Q2 + c)A ~< 0). Hence, in both cases we derive from global optimality 
of s condition (2.15), which can be rephrased into the set of copositivity 
properties (2.14). 

It remains to show that (b) implies (a). To this end consider again at first the 
case z(v) > 0. The Karush-Kuhn-Tucker  condition (2.6) guarantees 0 ~(0) ~< 0. 
Therefore, since 0 v is a quadratic function in A, it is evident that 0~(A) ~< 0 holds 
for all A ~ [0, Av] if and only if 0v(Av)~< 0, i.e. (2.15) holds. This equivalence is 
valid irrespective of the sign of the leading coefficient v rQv. In case z(v)= O, 
conditions (2.6) and (2.15) guarantee 0'~(A) = v rQvA + vr(Qs + c) <~ 0 for all 
A ~> 0, so that we in both cases arrive at the property 

Ov(A ) ~ 0  for all A~>O such that s  
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Evidently 2 then is a global solution to (2.1). [] 

According to the above theorem, 2 is no global solution if either 
�9 Case I: 2 is a Karush-Kuhn-Tucker  point, but (2.14) is violated; or 
�9 Case II: 2 is no Karush-Kuhn-Tucker  point. 

Since this section is devoted to the problem to escape from inefficient local 
solutions, we at first concentrate on Case I. However, for efficiency reasons it 
may pay also to deal with Case II, which we will do at the end of this section. 

The main ingredient of the escape procedure described below is the copositivity 
algorithm C0P0S from [3] addressed in the introduction, which (a) checks 
copositivity and (b) generates a direction v violating (1.2) in case of a negative 
answer. Note that there are several algorithms which achieve (a), see, e.g., [5], 
[11], [7], [6]. But, to our knowledge, the only one which also performs (b) is the 
algorithm given in [3]. 

ESCAPE (2) 

1. Initialization: if 2 is the first point investigated, call COPOS(Q 0 , F0); if the 
answer is negative, stop: the problem is unbounded from above (see (3.16) 
in [2]). Else z(v)= 0 implies vrQiv >i 0 for all v E F~; 

2. for all i E {1 , . . .  ,m} \ I (2 )  call COPOS(Q~, F~); if a direction v E F~ with 
vrQi v < 0  (and hence z(v)>0)  is generated, calculate the corresponding 
extremal increment (2.9), which equals 

u i 
0o(A~) = -2[(Av)i] 2 vrQi v > O. (2.16) 

If no improvement is obtained in this way, i.e. if all Qi are Fi-copositive, 
then stop: 2 is the global solution of (2.1). 

3. Pick that index i and the corresponding direction v with maximal 0v(Ao). Put 
2 = s  iv. Then 2 is a feasible point with g(2)>g(2) .  
Return. 

Now let us deal with Case II, where there are also locally improving feasible 
v ( Q x + c ) > O ,  cf. (2.5). If 0 v directions available, i.e. v E F  with 0'~(0)= r - 

happens to be strictly concave (i.e. if vrQv < 0), the extremal value of Ao might 
yield a lower improvement (if any) than a A interior to the interval [0, Ao]. In this 
case, the global maximum of 0 v is attained at A =/xo, where 

v T(Q2 + c) 
/x = (2.17) 

vTQo 

v Qv < 0  and (ii) To be precise, one has to replace s + hvv with s + tXvV if (i) r 
0 < / x  v <A v, to obtain the highest possible improvement along direction v. 
Observe that conditions (i) and (ii) can hold simultaneously only if 2 is no 
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Karush-Kuhn-Tucker  point and g is not convex. This is the reason why for 
convex maximization, the algorithm in [3] cannot be improved in this way. Note 
further that under (i), the inequality /x~ ~A v is equivalent to the piecewise 
quadratic inequality 

vr(Qs + c)z(v) <- - v r Q v  , 

which reduces to 

vTRiv>iO if v E F ~ ,  (2.18) 

where 

R~ = Bg - 2u~Q = Q~ - u~Q . (2.19) 

Since the above reasoning makes sense only if v T(Qs + c) >1 O, we decompose Fi 
as follows: 

F + = {v E F : v T ( Q 2 +  c) >i0), 

F-  = {v E F : v T ( Q 2 +  c) <.0}. 
(2.20) 

Then for i E  { 1 , . . . , m } \ I ( 2 )  let F [  = Fi f? F -+. 
To sum up, there are two ways to generate an improving feasible point 2, 

starting from 2 along a direction v E F~ (for the sake of completeness, we include 
also the case where no improvement along v is possible): 

2+txvv ,  if vrRiv>O and vEF~ 

2 + 1 ~ v ,  if vrRiv<~O and v E F [  

2= 2 + h v V ,  if vrQiv<O and v @ F [  

2 + 0 v ,  if vrQiv>lO and v E F i -  

(2.21) 

In the first case (which always implies v rQv < 0), the resulting improvement is 

[vr(Q2+c)l z 
g(2)-g(2)=~ 2vrQv (2.22) 

Note that the curvature of 0 o influences the distinction among the above case only 
indirectly. 

F i ), it to To avoid superfluous calls of COPOS(-R i , + is reasonable call first 
COPOS(Q, F § because the first case in (2.21) cannot pertain if Q is F---copositive 
(cf. Section 3 below). Hence, we propose the following improvement procedure: 

IMPR(f) 
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1. Initialization step: if 2 is the first point investigated, call c0Pos(Q0,  F0); if 
the answer is negative, stop: the problem is unbounded from above. 

2. Check whether 2 is a Karush-Kuhn-Tucker point or not by applying the 
simplex method to the linear program 

vr(Qy+ c)--->max! subjectto v E F .  (2.23) 

If the optimal objective value of (2.23) is zero, then Y is a Karush-Kuhn- 
Tucker point; call ESCAPE(Y) and return. Else (2.23) is unbounded. Store a 
direction v E F with vr(QY + c) > O. 

3. Select those i such that v E F [ ,  i.e. z(v)= (Av)i/ui, and set 

T 
imp(v)=  Ov(IXv)' if v R,v>O, 

T [O~(Av), if v R,v<~O. 

4. Call C0POS(Q, F+); if a direction w E F + is generated such that wrQw < O, 
repeat step 3, replacing v with w, and then go to the next step. Else (Q is 
F+-copositive) skip the next step. 

5. For all j ~ { 1 , . . . ,  m}\I(2) call C0POS(-Ri, F f ) ;  if a direction vj E F]  with 
T T vj Rjvj > 0 (and hence v] Qv] 0) is generated, calculate the corresponding 

improvement 

imp (vj) = O.,(/%j). 

6. For all j E {1 , . . .  ,m}\I(Y) call C0POS(Q], F / ) ;  if a direction wj E Ff  with 
T wi Qjwj < 0 is generated, calculate the corresponding improvement 

imp (wj) = 0wj(Awj). 

7. Pick that direction, v, or w, or vj, or wj, which yields the maximal 
improvement. Determine 2 according to (2.21). Return. 

Observe that steps 4 through 6 above merely serve to improve the objective 
function additionally. Hence one even could do without them in order to decrease 
computational cost, or, e.g., include only step 4 etc. 

3. Using Pseudoconvexity to Improve Efficiency 

Closer inspection of proqedure INPR reveals that in some cases, steps 4 through 6 
might yield no further improving feasible direction, so that the only improvement 
one gets is from step 3. On the other hand, the additional (affirmative) 
copositivity information obtained in these cases can be used to refine the 
procedure considerably. To this end we first characterize pseudoconvexity by 
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means of copositivity: recall that a function g : Nn--+ N is said to be pseudoconvex 
at 2 E N" with respect to a set S C R" if for any x E S (V denoting the gradient), 

(X--x)TVg(x)~>0 implies g(x)~>g(2).  (3.1) 

1 T A quadratic function g(x )=  : x  Qx + crx is pseudoconvex at 2 w.r.t. Nn as a 
whole if and only if Q is positive semidefinite, i.e., if g is convex. See, e.g. ([12] 
pp. 147, 152), where the case S = R n and S = Nn + are treated. Both cases are of 
restricted interest here as we are dealing with constrained problems, i.e. with the 
case S C M. 

T H E O R E M  2. Let g, M, Fi, g i and r7 be as in (2.1), (2.2), (2.10), (2.19), and 
(2.20), respectively. Define M i = {x E M : x - 2 E Fi}. Then 

(a) g is pseudoconvex at 2 w.r.t. M i if and only if 

- Q  ~ is F+-copositive . 

(b) I f  -R~ is FT-copositive, then g is pseudoconvex at 2 w.r.t. M~. 
(c) I f  Q is F+-copositive, then g is pseudoconvex at 2 w.r.t. M. 
Proof. (a) First observe that for S = Mg, condition (3.1) is equivalent to 

0~(2t)>i0 for all h~[0,2tv]  if v E r  + .  (3.2) 

Indeed, any x E Mi with (x - 2) r Vg(s = (x - 2 ) r ( Q s  + c) >10 gives rise to a 
direction v E F• and vice versa. Moreover, a number h I> 0 satisfies s + hv E M if 
and only if h @ [0, 2to]. Hence (3.1) implies (3.2) by definition (2.5). But positivity 
of 0v over the interval [0, ho] is guaranteed if 

vrOv  3 0  

or if 

v r Q v < O  and 2tv ~< 
2v T(Q2 + c) 

vTQu 

As in Section 2, the latter inequality is easily seen to be equivalent to vrQiv  <~ O, 
provided v r Q v < O .  On the other hand, vrQv>-O entails for any v C F  7 the 
relation vr  Qiv <~ 0. 

(b) follows easily from - Q i  = - R i -  u~Q and from the above arguments. (c) is 
obtained in a similar way. [] 

Hence if in steps 4 (or 5) of IMPR no improving directions w or uj are generated, 
we know from Theorem 2 that any direction w E F + (or vj E F T )  yields an 
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improvement. This knowledge may be exploited, e.g., by applying Lemke's 
complementary pivoting algorithm to the reduced problem 

g(x)---~max! subjectto x E M  + , (3.3) 

where M + = { x ~ M : (x - 2 ) r ( Q 2 + c) >I 0}. If every basic feasible solution of 
M + is non-degenerate, Lemke's algorithm after finitely many iterations either (i) 
generates a Karush-Kuhn-Tucker point of problem (3.3), or (ii) terminates with 
the information that (3.3) is unbounded from above, provided that the matrix - Q  
is copositive-plus ([1] p. 446). This property means that (a) - Q is R~-copositive; 

n and that (b) v r Q v  = 0 and v E R+ imply Qv = 0. Of course, the same assertions 
hold mutatis mutandis for the problems 

g(x)---~max! subjectto x E M [ ,  (3.4) 

+ 
where Mj = Mj fl M +. We now show how to transform problems (3.3) and (3.4) 
to validate these properties of Q. 

T H E O R E M  3. Let  Q be a symmetric n • n-matrix with eigenvalues ~1 <~ " " " <~ hn 

and corresponding orthonormal eigenvectors q l , . . . ,  qn. Assume  that A k < 0 

Ak+ 1 holds for  some k E  {1, . . .  , n - 1 } ,  and that An>0 , which means that Q is 

indefinite. Form the basis b a . . . .  , b n as follows: 

~qi , i f  i <~k , 
b i = [ qk + ~qi , e lse ,  

where 6 = ~ .  Let  B be the regular n • n-matrix consisting o f  the columns 

b i . Then 

(a) the n x n-matrix --BT QB is copositive-plus; 

(b) the point  x is a K a r u s h - K u h n - T u c k e r  point  o f  problem (3.3) i f  and only i f  

the point  y is a K a r u s h - K u h n - T u c k e r  point o f  the problem 

�89 y T(B r Q B ) y  + (Bc) ry --~ max ! 

( A B ) y  <~ b 

- ( Q 2  + c)rBy <~ - ( Q s  + c)T2 

(3.5) 

Similarly, (3.3) is unbounded f rom above i f  and only i f  (3.5) is unbounded 
f r o m  above. 

Proof. (a) By construction of bi, we get for y = [ % , . . . ,  %]r  E ~+ 
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yrBrQBy = s 
i = 1  

k 

=E 
i = 1  

k 

42  
i = 1  

k 

4E 
i = 1  

k 

=E 
i = 1  

(~i) 2A, + ~i a~ + a 2 E (~,)% 
i>k 

2 aa (a~) a. 
i>j>k i>k i>k 

2 1 2  2 (Oli) "~i "b 2 0 l i O l j ~ t  k "~ (O~i) ~k 
i>j>k 2 i>k 

1 (  )2 
2 +-- ~ a, A~<O 

( a i )  a i  2 i>k  " 

with equality only if y = o. Hence assertion (a) follows. 
(b) is an easy consequence of the fact that the map y ~ x  = By is invertible. 

[] 

To sum up, we start with the following preprocessing procedure, in which we also 
incorporate the initialization steps from ESCAPE and IMPR: 

PREPROC 

1. Diagonalize Q. If Q is positive semidefinite, apply the algorithm in [3] and 
stop. If Q is negative semidefinite, we have a convex minimization problem, 
where every Karush-Kuhn-Tucker point delivers a solution. Apply, e.g., 
Lemke's algorithm to problem (2.1) and stop. Else Q is indefinite. Then 
proceed as in Theorem 3 to ensure that - B r Q B  is copositive-plus. 

2. Form Q0 and F0-which do not depend on any point f - a s  in (2.11) and 
(2.12). Call COP0S(Q0, F0); if the answer is negative, stop: the problem is 
unbounded from above. Else suppress, in all subsequent calls of ESCAPE 
and IMPR, the initialization steps, and generate a feasible point f E M, e.g., 
via phase I of the simplex method. Return. 

Next we try to make IMPR more efficient along the lines indicated above. 

EFFIMPR(2) 

i. Perform steps 2 through 4 of IMPR(2). 
2. (this is a modification of step 5 in IMPR) 

+ + 

For all j E {I,..., m}\l(x) call COPOS(-Rj, F] ); if a direction vj @ Fj with 
r > 0  (and hence r < vj Rjvj vi Qvj 0) is generated, calculate the corresponding 

improvement 

imp (vj) = O~i(t,.j ) . 
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Else ( -R j  is Fj+-copositive) apply Lemke's method to problem (3.4). 
If the resulting Karush-Kuhn-Tucker point y satisfies g(y) > g(2),  then for 

+ 
y - f E Fj record 

imp (y - f )  = g(y) - g(2)  > O . 

3. (this is a modification of step 6 in IMPR) 
If Q is F+-copositive (cf. step 4 in IMPR), then apply Lemke's algorithm to 
the problem (3.3) and proceed with the resulting Karush-Kuhn-Tucker 
point y as in step 2 above. For all j E {1, . . .  , m } \ I ( 2 )  call COPOS(Qj., F / ) ;  
if a direction wj E F /  with wrQjwj  < 0 is generated, calculate the corre- 
sponding improvement 

imp (wj) = O~j(A~j). 

4. Pick that direction, v, or w, or vj, or wj, or y - f ,  which yields the maximal 
improvement. Determine 2 as in (2.21), or put 2 = y, accordingly. Return. 

Similarly one could use the information that Qj is Fy-copositive obtained in step 
6 of IMPR: this means that g(x) <~ g ( f )  for all x E F/-, so that one could replace M 
with M\Fj- .  This procedure might be interpreted as performing several deep cuts 
simultaneously, cf. ([10] pp. 86, 195, 205). However, M\Fj- is no more a 
polyhedron in general, so that this method rather resembles branch-and-bound 
procedures for global optimization as described, e.g., in ([10] pp. 111ff.). 

4. A Finite Global Optimization Procedure 

We begin with a rather simple argument. Let PRTMALG denote the primitive 
method to start with PREPROC and then iterate procedure EFFEMPR, replacing f 
with 2. Then this algorithm terminates after a finite number of iterations, 
provided that the following assumption holds: 

for any choice of the starting point x 0 E M, PRIMALG generates 
(4. 1 ) 

a Karush-Kuhn-Tucker point of (2.1) after finitely many steps. J 

Under assumption (4.1), finiteness of PRIMALG follows from the following 
elementary result: 

LEMMA 4. The set 

V= { g ( f )  : Y is a Karush-Kuhn-Tucker  point of  (2.1)) 

of  objective values at Karush-Kuhn-Tucker  points has less than 2 m 4- 1 elements. 
Proof. Let Y and y be two Karush-Kuhn-Tucker points located at the relative 

interior of the same facet of M. This simply means I (2)  = I(y-). Then v = y - x 
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satisfies 2 + Av C M and 37- Av E M irrespective of the sign of A, provided [A I is 
small enough. Hence from the first-order optimality conditions we obtain 0 ~(0) = 
0 and ~-'~(0) = 0 where 0o(A ) = g(2 + Av) - g(2) and To(A ) = g()7 -- Av) -- g(f ) .  But 
% ( A ) = O o ( 1 - A ) + g ( 2 ) - g ( y ) ,  so that we conclude 0 'o(1)=0.  Hence 0o is 
constant, and we get g(y-)=g(s Since there are 2 m possibilities to choose 

I C { 1 , . . . ,  m}, the result follows. [] 

With the same technique one can show that for two Karush -Kuhn-Tucke r  points 
s and )7 of (2.1), 

I (2)  C I(37) implies g(s <~ g(~) . (4.2) 

An easy consequence of property (4.2) is the well-known fact that the global 
maximum of a non-concave quadratic function is attained at the boundary of the 
feasible polyhedron M, see, e.g. ([15] p. 39). 

However ,  we are not aware of simple conditions which guarantee that 
assumption (4.1) holds. Therefore,  we have to include an anti-jamming device in 
the following algorithm. To this end, we need some further notation: For 
I _C {1 . . . .  , m}, let F~ = (x ~ M : I C I(x)} be the corresponding facet of M, and 
let F~ = {x E M : I(x) -- I} be its relative interior. Then for any s ~ F~, the set of 
feasible directions leading to a point in F x coincides with 

F I = {v E R n : (Av)i = 0 for all i E I } .  

COPOSGLOBAL 

1. Call PREPROC. 
2. If s is the feasible point generated, let I = I ( f )  and call COPOS(-Q, F~). 

2a. If - Q  is F/-copositive, then 

g(x) ~ max! subject to x E F x (4.3) 

is a concave quadratic maximization problem. Apply Lemke's  procedure 
to (4.3), which (under non-degeneracy) after finitely many steps either 
stops with the information that ( 4 . 3 ) -  and hence ( 2 . 1 ) - i s  unbounded 
from above, or delivers a global solution x 1 of (4.3). In the latter case, 
call EFFIMPR, replacing f with xt ,  and go to step 3. 

2b. Else a direction v ~ F l is generated with vrQv > 0. Since also - v  E F 1 , 
convexity of the function 0 o yields max{0v(Ao), 0_o(A_v)} > 0 (note that 
PREPROC would have stopped before if +v E 170). If 0o(Ao) t> 0 o(A v) > 
0, then put 2 = f +  Aov; otherwise let 2 = 2 -  A_ov. Go to step 3. 

3. Replace s with the obtained improving feasible point 2, and repeat step 2. 

T H E O R E M  5. Suppose that every basic feasible solution occurring during the use 
of  Lemke's procedure in algorithm COPOSGLOBAL is non-degenerate. Then this 
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algorithm stops after finitely many iterations, either with the information that (2.1) 
is unbounded from above, or delivering the global solution of  (2.1). 

Proof. The non-degeneracy assumption together with the transformation 
performed in PREPROC ensures that Lemke's  procedure is finite and exact 
whenever  it is used during the algorithm (cf. Theorem 3). Whenever  branch 2b of 
COPOSGLOBAL is entered,  the set I is enlarged by at least one element,  because 

I(2 +- A+_vV ) = 1(2) U {i} 

where i ~ I ( 2 )  satisfies z(+-v) = +-(Av)i/u i. Hence this can happen successively in 
at most m iterations, whereafter  we would obtain I - - { 1 , . . .  ,m}.  But then 
F I C F0, so that branch 2a will pertain in the next iteration (otherwise PREPROC 
would have stopped before). On the other hand, every successful execution of 
branch 2a guarantees the strict inequality 

g(2) > g(2)  : g(x,) >I g(x) for all x E F1, 

so that the facet F I will never be visited again during the following iterations. 
Since M is the finite union of its facets, the assertion is proved. [] 

E X A M P L E .  Consider the problem from Example X.5. in ([10] p. 578). Here  
n = 2 ;  m = 4 ;  

[0 o 1] 1 
Q =  1 ; c =  ; A =  - 1  0 1 

b = [3, 3, 0, 0 ] r .  

; and 

For  the sake of argument,  let us assume that COPOS(Q, F) contains an additional 
shortcut method consisting of (a) checking whether an eigenvector corresponding 
to a negative eigenvalue belongs to F and (b) of checking whether the extremal 
rays of F violate (1.2). If one of these cases happens, the corresponding direction 
v is returned. Note that these shortcuts are not mentioned explicitly in [3]. 
Directions w and v in iterations 1 and 2 below are generated according to (a), 
while directions v 1 and v 2 in iteration 1 originate from case (b), since the 

+ 
eigenvectors do not belong to the corresponding cones F j .  The algorithm 
COPOSGLOBAL now proceeds as follows: 

1. PREPROC yields indefiniteness of Q and F 0 = {o}. Hence Q0 is trivially 
F0-copositive. The first feasible point generated is the vertex x 0 = o. 

Iteration 1: 
2. For  2 = x0, we have I = {3, 4}. Since x 0 is a vertex, F 1 = {o} and hence - Q  

is copositive w.r.t, this cone. Case 2a holds, and problem (4.3) is trivial. 
x x = x 0 and EFFIMPR(x0) is called: 
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T 1. Since v = [1, 0] r E F satisfies v (Qx  o + c) = 1 > O, x o is no Karush -Kuhn-  
Tucker point, and 

imp (v) = 0v(Ao) = 1. 

Furthermore, F + = N] ,  thus Q is not F+-copositive, and COPOS(Q, F +) 
generates w = [1, 1] T, yielding the improvement 

imp (w) = Ow(lX~) = 1 .  

2. Next we determine 

+ 
as well as Fj = Fj, which have the extremal rays [1, 1] r, [0, 1] r for j = 1, 
and [1,1] T, [1,0] T for j = 2 ,  respectively (see Figure 1). Then 
COPOS(-R1, Fx) and COPOS(-R 2, F~-) both yield the same improving 
d i r e c t i o n  v I =/ .3 2 = w .  

3. Thereafter, we investigate F j  = {o} and obtain F~--copositivity of Qj for 
] = 1 , 2 .  

4. By coincidence both directions v =- [1, 0] r and w = [1, 1] r obtained so far 
yield the same improvement. For didactic reasons, we choose 2 = x  0 + 
i%w=[1 ,1 ]  v. Note that if we chose 2 = X o + , ~ o v = [ 1 ,  O] T, t h e n  the 
procedure would terminate at the global solution in the next iteration. 

3. Now x~ = [1, 1] T is the starting point for" 

Iteration 2: 

2. x 1 is interior to M so that I = It, and thus F1 = E2. Hence, case 2b holds. 

Y 

3/2 i-i-:-ri, i-Z.. i. i-j:..-i:!i!i(i!!:!;i:;i. 

. : .  : .=..i..-.:"=. �9 ==================================================================== 
3/8 ..-;'~ 

0 I 3 /2  z 

Fig. I .  C o n e s  at  x o ( for  M i cf. Th in  2). 
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c o P o s ( - Q ,  N2) yields v = [1, -1 ]  r. Then 0o(Av) = 1  >0_o(A_v ) -1~-,- 1 and 

3. Now x 2 = [�88 3] r  is the starting point for 

Iteration 3: 

2. Now I = {2} and F l = {v E E2 : vz = 3vt}" Moreover,  - Q  is F1-copositive. 
Since this cone is a straight line, the corresponding problem (4.3) is easily 
solved, resulting in x 3 = x I = [7, �89 Again, EFFINPR(x3) is called. 
1. Since (2.23) has optimal value zero, x 3 is a Karush-Kuhn-Tucker  point. 

Now I = {1, 3, 4}, and ESCAPE(x3) has to call COPOS(Qi, F~) for all i @ I. 
Here  

Q'=[~ 8~3]; Q3:[11 ~]; and Q4 =[~ -~/3]" 
Now Q1 is positive definite; Q3 has positive entries and is thus copositive 
w.r.t. E2 and hence also w.r.t F 3 C _E2+; finally, any direction v ~ F  4 
satisfies v 2 = - (Av)4  ~< 0 and thus 6Va - v2 ~< 6vl - 2vz = 2(Av) 2 ~< 0, SO 
that 3vrQ4 v = V z ( 6 V  1 - - V 2 ) ~ 0  (the cones are depicted in Figure 2). 
Hence all Qi are F~-copositive, and the algorithm stops, delivering the 
global maximizer x 3 = [7, �89 with objective value 13 

The path generated by COPOSGLOBAL is shown in Figure 3. 

Apart  from efficiently selecting an improving feasible direction, the proposed 
algorithm frequently uses the simplex algorithm. This fact, together with quite 
encouraging numerical experiments with the central copositivity procedure 
COPOS, which consist of data-driven recursive schemes using again the simplex 
method [3], suggests that in the average case (cf. [4]) the computational costs of 

3/2 

1 

X3 

;g 
o 1 3/2 

Fig. 2. Partition of M induced by cones at x 3 . 
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3/8 

;go 
0 
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\ 

1 

/ 
;2 
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3)2 x 

Fig. 3. Path generated by COPOS-  
GLOBAL. 



16 I M M A N U E L  M. B O M Z E  A N D  G A B R I E L E  D A N N I N G E R  

COPOSGLOBAL can be held within reasonable limits. The observation that the 
similar optimization procedure in [3] delivers the solution of (1.1) after at most n 
steps may further support this assertion. 

As mentioned already in the introduction, problem (2.1) is NP-hard from the 
worst-case complexity point of view. However, our approach shows that there is 
no essential difference between the complexities of checking local optimality and 
of checking global optimality, despite the fears expressed in [13], 
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